Can SHED or DPSCs be used to repair/regenerate non-dental tissues? A systematic review of in vivo studies.

نویسندگان

  • Felipe Perozzo Daltoé
  • Priscila Pedra Mendonça
  • Andrea Mantesso
  • Maria Cristina Zindel Deboni
چکیده

Dental pulp has been identified as a novel and promising stem cell source. The following systematic review presents and summarises in vivo studies that have used stem cells from the dental pulp of permanent and deciduous teeth to repair or regenerate non-dental tissues. An electronic customised search was performed using 4 different databases (Entrez PubMed, Cab Abstracts, Scopus and Web of Science). Only full-text research manuscripts published in English between the years of 2000 and 2012 were included. The manuscripts were retrieved based on the following keywords and/or abbreviations: [Stem Cells from Human Exfoliated Deciduous teeth (SHED)] AND/OR [Dental Pulp Stem Cells (DPSC)] AND [tissue regeneration] AND [tissue repair]. Only manuscripts involving in vivo applications of SHED or DPSC for the repair and/or regeneration of non-dental tissues were included. The search strategy produced 2309 papers, from which 14 were eligible according to the predetermined inclusion and exclusion criteria. Although human tissue was the source of cells in half of the studies included in our review, all of the studies involved transplantation into animals of other species, such as pigs, rats and mice. Most of the manuscripts reported the successful use of DPSCs or SHED for non-dental tissue repair or regeneration. While these cell populations represent promising alternative sources of stem cells for tissue engineering and cell-based regenerative medicine therapies, it is not yet possible to guarantee the appropriate clinical management of this technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential use of Dental Pulp Stem Cell in Laboratory Studies and Clinical Trials

Stem cell-based therapy has great potential in treating health conditions including cardiovascular, autoimmune, type I diabetes, neurodegenerative and bone and cartilage diseases also in spinal cord injuries, malformations and cancer. In addition to their potential use to treat systemic diseases, stem cell-based therapy also provides a powerful tool to treat oral and dental diseases such as cra...

متن کامل

Imperative Role of Dental Pulp Stem Cells in Regenerative Therapies: A Systematic Review

Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology i...

متن کامل

Stem Cells of the Dental Pulp

 Dental Pulp Stem Cells (DPSCs) can be found within the cell rich zone of dental pulp. These stem cells, under specific stimuli, differentiate into many cell types which have wide therapeutic applications.   The dental stem cells are derived from both deciduous and permanent teeth. The viable dental stem cells are very simple to collect, without any mortality and morbidity. Dental pulp stem c...

متن کامل

Clinical Applicability of Stem Cell Therapy in Dental Diseases: A Systematic Review of Available Clinical Trials

Background: Developing cell-based therapeutic methods for the differentiation of various stem cells to the dental tissues could be a revolutionary step towards the use of cell therapy for dental disease. In the present study, we aimed to systematically review the literature to establish the efficiency of stem cells in treatment of various dental diseases. Methods: A literature search was perfo...

متن کامل

Therapeutic metallic ions in bone tissue engineering: A systematic review of the literature

An important field of bone tissue engineering (BTE) concerns the design and fabrication of smart scaffolds capable of inducing cellular interactions and differentiation of osteo-progenitor cells. One of these additives that has gained growing attention is metallic ions as therapeutic agents (MITAs). The specific biological advantage that these ions bring to scaffolds as well as other potential ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brazilian oral research

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2014